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OPTIMIZED DEEP LEARNING MODEL BASED CHANNEL 
ESTIMATION FOR MASSIVE MIMO WITH HYBRID 
TRANSCEIVERS: A META-HEURISTIC APPROACH 

 
 
 
 
 
 
 
 
 
Abstract—At present in the field of wireless 
communication, artificial intelligence technology is an 
effective way to all levels of the wireless communication 
system. In 5G mobile technology, to achieve high 
spectrum utilization and link reliability large-scale 
Multiple Input Multiple Output technology is used. In 
this paper, the proposed HAD massive MIMO systems 
optimized Deep Convolutional Neural Network is used 
for uplink channel estimation. For enhance the channel 
estimation capability inside each neural network, the 
region-specific measurement matrix and channel 
estimator are jointly optimized. The network 
parameters are selected with an Improved Election-
based Optimization Algorithm. The HAD architecture 
is designed for the proposed approach is reduce the 
hardware cost and circuit energy consumption. 
 
Keywords—Multiple Input Multiple Output, Deep 
convolutional neural network, Hybrid analog-digital, 
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I.INTRODUCTION 
Massive multiple-input multiple-output (MIMO) is 

significant in terms of spectral and energy efficiency and 
enabling technologies in the fifth generation of wireless 
communication systems [1, 2]. In 5G mobile 
communication systems, high spectrum utilization and link 
reliability is achieved with large-scale Multiple Input 
Multiple Output (MIMO) technology. The problems faced 
by massive MIMO systems are increasing the number of 
antennas configured at the transceiver end of the MIMO 
system and the signal processing process at the receiving 
end of the communication system becomes more 
complex[3, 4]. So designing signal detection algorithms 
with low computational complexity and high detection 
performance is difficult for massive MIMO systems [5].  
 In time-division duplex (TDD) systems, only the 
uplink channel needs to be estimated, but in frequency-
division duplex (FDD) systems, the downlink CSI needs to 
be estimated and fed back to the base station (BS) by the 
users. This downlink training and uplink feedback  
 

 
increases the number of antennas at the BS and can 
deteriorate the system efficiency [21 ][22 ][23] [24 ][25].  
Since the problem comes from the large number of 
antennas, dimension reduction is important. 

The traditional method uses compressive sensing 
(CS) algorithms like S-VBI [17], which, however, is not 
suitable for the power leakage, thereby decreasing the 
sparsity level of signal .CS algorithms the true AoAs of 
uplink channel paths at the BS do not exactly match the 
discrete angle grids find out by the shift-version DFT 
matrix [7]. In the case of low sparsity level signals, CS 
algorithms often fail to achieve satisfactory performance. 
For the above problems, algorithms with less dependency 
on signal sparsity and better performance-complexity, we 
propose a DL-based HAD massive MIMO channel 
estimation approach.  

 
III.LITERATURE REVIEW 

In [7], a spatial BEM has been proposed to 
transform the problem of estimating channel impulse 
responses to that of estimating spatial basis function 
weights, which are sparse due to the physical scattering 
characteristics. The spatial and frequency wideband effects 
are considered in [8], where the channel sparsity in the 
angle and the delay domains is exploited, and angular and 
delay rotations are used to further enhance the sparsity 
level. Although more computationally efficient, the BEM 
methods inevitably introduce approximation error to 
channel estimation due to the imperfect model. A 
comprehensive overview of low-rank channel estimation 
methods for massive MIMO systems can be found in [9]. 

In conventional massive MIMO systems, each 
antenna is equipped with a dedicated radiofrequency (RF) 
chain, which leads to high hardware and energy cost when 
the number of antennas is large. To tackle this issue, the so-
called hybrid analog-digital (HAD) architecture has been 
proposed, where the multi-antenna array is connected to 
only a limited number of RF chains through phase shifters 
in the analog domain [10, 11]. However, the channel 
estimation problem becomes more difficult in the context 
of HAD since now the received signals at the BS are not 
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the original signals at antennas, but only a few of their 
linear combinations. In this situation, the conventional 
least-square (LS) estimator becomes inefficient with 
dramatically increased overhead [12]. 

In [13], the complete channels are obta
in the preamble stage and directions-ofarrival (DoAs) of 
channel paths are estimated first. Since the DoAs change 
slowly and can be used for a relatively long period, only 
channel gains of each path need to be re
Usually, the number of paths is much smaller than that of 
antennas in millimeter wave systems, therefore greatly 
reducing the estimation overhead. An alternative method is 
to adopt the compressive sensing (CS) methods to directly 
recover the sparse channels all at once, such a
matching pursuit (OMP) [14], sparse Bayesian learning 
(SBL) [15], etc. Through embedding the structural 
characteristics of channel sparsity, several improved CS 
algorithms have been further proposed, including 
structured SBL [16] and structured variational Bayesian 
inference (S-VBI) [17].  

The aforementioned methods either suffer from 
unsatisfactory performance or high complexity, hence 
channel estimation algorithms with better performance
complexity tradeoffs are urgently required for practical 
HAD massive MIMO systems. Recently, deep learning 
(DL) has been successfully applied to many areas in 
wireless communication [18–20], including spectrum 
sensing [21], resource management [22] [24], beamforming 
[25] [27], signal detection [20], and channel estimation

 
III.PROPOSED MODEL

Massive multiple-input multiple-output (MIMO)
in practical applications faces one of the critical challenge 

Fig.1 Proposed Two-stage optimized deep learning
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antennas in millimeter wave systems, therefore greatly 
reducing the estimation overhead. An alternative method is 
to adopt the compressive sensing (CS) methods to directly 
recover the sparse channels all at once, such as orthogonal 
matching pursuit (OMP) [14], sparse Bayesian learning 
(SBL) [15], etc. Through embedding the structural 
characteristics of channel sparsity, several improved CS 
algorithms have been further proposed, including 

d variational Bayesian 
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PROPOSED MODEL 
output (MIMO) 

one of the critical challenge 

i.e,accurate and efficient estimation of
channels. In the hybrid analog digital (HAD) transceivers, 
channel estimation becomes more complicated 
information loss caused by limited radio
The traditional compressive sensing (CS) 
some drawbacks due to unsatisfactory performance and 
high computational complexity. Therefore, in this research 
work, a two-stage optimized deep learning
estimation framework will be proposed. 
includes three stages, namely 
network training, and online network selection

In the first stage, the entire angular space is 
segmented into many small angular r
region, the neural network containing 
matrix and a channel estimator is trained with a large 
amount of channel data collected from users in the 
region.  

Then the second stage, two 
to the BS by the user. The GPS infor
regularly to help BS select a suitable netwo
The azimuth angle of the user can be calculated b
the received position coordinates 
region-specific measurement matrix and channel estimator 
can be extracted. Second, all antennas at the user transmit 
orthogonal pilot sequences to the BS simultaneously during 
the pilot training phase. Then the analog and digital 
combining matrices received baseband signal processed by
the channel estimator can be used to estimate the user’s 
channels. 
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Network segmentation: 

 Initially,the entire angular space is segmented 
into many small regions with a novel angular space 
segmentation method. This helps to better exploit the 
sparsity structure of channels in the angular domain. 
Network training: 

 A dedicated optimized Deep Convolutional 
Neural Network (DCNN)is trained for each region (i.e. 
segments). DCNN will be trained with the large amount of 
channel data collected from users in the angular 
region.Inside each DCNN, theregion-specific measurement 
matrix and channel estimator are optimally selected with 
Improved Election-based Optimization Algorithm (I-
EBOA), which not only improves the signal measurement 
efficiency, but also enhances the channel estimation 
capability.This I-EBOA model will assist in optimizing the 
network parameters (weight) of DCNN. Moreover, I-
EBOA will be an improved version of standard Election-
based Optimization Algorithm (EBOA). In fact, the 
standard EBOA model has been developed with the 
inspiration acquired from voting process to select the 
leader.  
Network selection and configuration: 

In the network selection phase, two kinds of data 
are sent to the Base Station (BS) by the user. First, the GPS 
information is sent periodically to help BS select a suitable 
network for the user. Specifically, based on the received 
position coordinates, the azimuth angle of the user can be 
calculated, and the network whose corresponding angular 
region contains the azimuth angle is selected, from which a 
pair of region-specific measurement matrix and channel 
estimator can be extracted. Second, all antennas at the user 
transmit orthogonal pilot sequences to the BS 
simultaneously during the pilot training phase. Then, based 
on the received baseband signal processed by the analog 
and digital combining matrices, the channel estimator can 
be used to estimate the user’s channels. 

Algorithm for the offline networks training, online 
network selection and configuration processes 
Step 1: % Initialization  
Step 2: Initialize the width of angular regions β, the 
maximal azimuth angle error △θaz, the angular spread  of 

uplink channel △θ, dataset , required data number D, 
data number counter d = 0, the start angle    θstart = 0, and 
the lower bound of the end angle θelb = π/2  
Step 3: % Offline multiple networks training  
Step 4: while θs < θelb do 
Step 5: while d < D do  
Step 6: Compute the end angle θend = θstart + β, uniformly 
sample an azimuth angle of the user θaz in the angular 
region [θstart − △θaz, θend + △θaz] 
 Step 7: Uniformly sample AoAs of channel paths at the BS 
in the AoA range [θaz − △θ, θaz + △θ], uniformly sample 
AoDs of channel paths at the user in the AoD range [0, 2π], 

randomly generate gains of channel paths according to                
Then, generate a channel label Hd according to                        
 and obtain the data Hˆ d by adding noise on the label 

Step 8: Append  with M (hˆ d, hd) pairs, where hˆ d and 
hd are columns of Hˆ d and Hd, respectively  
Step 9: d = d + 1  
Step 10: end while  

Step 11: Train a neural network to convergence with , 
save the network model and record the θstart and θend 

corresponding to this network. Then, empty  
Step 12: Update θstart = θend for the next angular region  
Step 13: end while  
Step 14: % Online network selection 
Step 15: Compute the azimuth angle of the user θaz based 
on the position coordinates of the BS and the user, which 
can be obtained by GPS information  
Step 16: If 0 ≤ θaz ≤ π/2, select the network that satisfies 
θstart ≤ θaz ≤ θend. If π/2 ≤ θaz ≤ π, select the network 
corresponding to the azimuth angle with the same sine 
value. If π ≤ θaz ≤ 2π, select the network corresponding to 
the azimuth angle with the opposite sine value  
Step 17: % Measurement matrix configuration and channel 
estimation 
Step 18: Extract the analog and digital measurement 
matrices WRF and WBB, and the channel estimator from the 
selected network 
Step 19: Configure the phase shifters according to WRF 
Step 20: Measure the signals and process the baseband 
signal with WBB, then do channel estimation with the 
channel estimator 

IV.RESULTS AND DISCUSSION 

 
Simulation results of the proposed DL-based 

channel estimation approach and validate its superiority is 
presented here. The normalized MSE (NMSE) as the 
performance metric, which is defined by 

 
where Hˆ denotes the estimated channel matrix. Therefore, 
the NMSEs of the original channels and the angular 
domain channels are the same. The parameters used in the 
simulation experiments are summarized in Table I 

The energy distributions of its columns and the 
elements of the average angular domain channel vector are 
explained in Fig. 2 
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TABLE I. Simulation Parameters 

 

 

 

Fig. 2 Energy distributions of different Φ’s columns and 
the average of x’s elements. 

The impact of angular spread, △θ, is explained in Fig. 3 

 

 

Fig.3 The impact of angular spread 

 

TABLE II. The impact of angular space segmentation 
granularity 

 

 

Fig. 4The impact of antenna number 

The impact of SNR is explained in Fig. 5. It is 
shows that higher SNR results in better performance 
because of reduced noise effects. However, with 1/8 RF 
chains, the NMSE of S-VBI meets SNR increases above 15 
dB, where the error is controlled by the limited ability of 
reversing the compression effects. Then, the NMSE of DL-
based approach continues to decrease smoothly, which 
indicates its superiority and the generalization to different 
testing SNRs are investigated properly. 
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Fig..5The impact of SNR. 

V.CONCLUSION 

The proposed approach can be particularly appealing in 
scenarios where energy saving is critical, such as IoT 
communications, since much better performance can be 
achieved without any extra energy cost of channel 
estimation. Simulation results show that the proposed DL-
based approach is superior to the state-of-the-art CS 
algorithms and the conventional measurement matrix in 
terms of both NMSE performance and computational  
complexity, providing a promising real-time solution for 
HAD massive MIMO systems . The HAD architecture 
adopted here is reduces the hardware cost and circuit 
energy consumption. 
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